375 research outputs found

    Flammability behaviour of wood and a review of the methods for its reduction

    Get PDF
    Wood is one of the most sustainable, aesthetically pleasing and environmentally benign materials. Not only is wood often an integral part of structures, it is also the main source of furnishings found in homes, schools, and offices around the world. The often inevitable hazards of fire make wood a very desirable material for further investigation. As well as ignition resistance and a low heat release rate, timber products have long been required to resist burn-through and maintain structural integrity whilst continuing to provide protection when exposed to fire or heat. Various industry standard tests are thus required to ensure adequate protection from fire is provided. When heated, wood undergoes thermal degradation and combustion to produce gases, vapours, tars and char. In order to understand and alter the fire behaviour of wood, it is necessary to know in as much detail as possible about its processes of decomposition. Various thermal analysis and flammability assessment techniques are utilised for this purpose, including thermogravimetric analysis, cone calorimetry and the single burning item test. The results of such tests are often highly dependent on various parameters including changes to the gas composition, temperature, heating rate, and sample shape size. Potential approaches for fire retarding timber are reviewed, identifying two main approaches: char formation and isolating layers. Other potential approaches are recognised, including the use of inorganic minerals, such as sericrite, and metal foils in combination with intumescent products. Formulations containing silicon, nitrogen and phosphorus have been reported, and efforts to retain silicon in the wood have been successful using micro-layers of silicon dioxide. Nano-scale fire retardants, such as nanocomposite coatings, are considered to provide a new generation of fire retardants, and may have potential for wood. Expandable graphite is identified for use in polymers and has potential for wood provided coating applications are preferred

    Analysis of individual molecular dynamics snapshots simulating wetting of surfaces using spheroidal geometric constructions

    Get PDF
    Accurate characterization of wettability of minerals is important for efficient oil recovery and carbon geosequestration. In studies where molecular dynamics simulations are used to compute the contact angle, emphasis is often placed on results or theoretical details of the simulations themselves, overlooking potentially applicable methodologies for determination of the contact angle. In this manuscript, a concept of a method utilizing spheroidal geometric constructions to estimate the contact angle of a water droplet on a silica surface in carbon dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics simulation runs. Two carbon dioxide pressures and two wettability modes (hydrophilic and hydrophobic) are examined to assess the method’s performance. The most stable 6-membered ellipselike rings (001) pristine surface of alpha-quartz is reconstructed using molecular dynamics and its wettability is then investigated for the first time. The outcomes of the calculations are compared with results produced with the isodensity chart method, and good agreement with the latter approach is demonstrated. The proposed method can be used as an alternative, or in conjunction with other techniques, to increase the confidence in contact angle estimations via molecular mechanics calculations. Reliable contact angle estimations, on the other hand, can guarantee accurate storage capacity and security of carbon capture and storage projects

    Application of the CLAYFF and the DREIDING force fields for modeling of alkylated quartz surfaces

    Get PDF
    To extend applicability and to overcome limitations of combining rules for nonbond potential parameters, in this study, CLAYFF and DREIDING force fields are coupled at the level of atomic site charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader charge analysis are applied to calculate charges of atoms of the OC bond connecting a quartz crystal and an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond in a manner consistent with the results calculated at the density functional level of theory. Augmented with modified charges of the OC bond, force fields can then be applied to a practical problem of evaluation of the contact angle of a water droplet on alkylated quartz surfaces in a carbon dioxide environment, which is relevant for carbon geo-sequestration and in a broader context of oil and gas recovery. Alkylated quartz surfaces have been shown to be extremely hydrophobic even when the surface density of hydroxyl groups is close to the highest naturally observed density of 6.2 OH groups per square nanometer

    The scaling exponent of residual nonwetting phase cluster size distributions in porous media

    Get PDF
    During an imbibition process in two-phase subsurface flow the imbibing phase can displace the nonwetting phase up to an endpoint at which a residual saturation is reached (which cannot be reduced further by additional wetting phase flow due to the complex pore network of the rock and associated strong capillary forces which trap the nonwetting phase). The residual nonwetting phase is split into many disconnected clusters of different sizes. This size distribution is of key importance, for instance, in the context of hydrocarbon recovery, contaminant transport, or CO2 geostorage; and it is well established that this size distribution follows a power law. However, there is significant uncertainty associated with the exact value of the distribution exponent t, which mathematically describes the size distribution. To reduce this uncertainty and to better constrain t, we analyzed a representative experimental data set with mathematically rigorous methods, and we demonstrate that t is substantially smaller (˜1.1) than previously suggested. This raises increasing doubt that simple percolation models can accurately predict subsurface fluid flow behavior; and this has serious consequences for subsurface flow processes: hydrocarbon recovery is easier than predicted, but CO2 geostorage dissolution trapping capacities are significantly reduced and potential remobilization of residual CO2 is more likely than previously believed. © 2016 American Geophysical Union. All Rights Reserved

    Improving basalt wettability to de-risk CO2 geo-storage in basaltic formations

    Get PDF
    CO2 geo-storage in basaltic formations has recently been identified as a viable option to rapidly dispose large quantities of CO2, hence mitigating anthropogenic CO2 emissions. However, it has been shown that basalt is weakly water-wet or intermediate-wet at typical storage conditions, which reduces capillary trapping capacities and increases lateral and vertical spreading of the CO2 plume; and these effects increase project risk. We thus propose here to prime basalt surfaces with anionic surfactant (here we used sodium dodecyl benzene sulfonate), and demonstrate that such priming is highly efficient, and renders the basalt completely water-wet even at high pressures and minute sodium dodecyl benzene sulfonate concentrations. Such a wettability alteration can therefore significantly de-risk storage projects. This work aids in the improvement of CO2 storage in basaltic formations and supports implementation of industrial-scale CO2 geo-sequestration and climate change mitigation

    Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration

    Get PDF
    In the context of carbon geo-sequestration projects, brine–CO2 interfacial tension γ and brine–CO2–rock surface water contact angles θ directly impact structural and residual trapping capacities. While γ is fairly well understood there is still large uncertainty associated with θ. We present here an investigation of γ and θ using a molecular approach based on molecular dynamics computer simulations. We consider a system consisting of CO2/water/NaCl and an α-quartz surface, covering a brine salinity range between 0 and 4 molal. The simulation models accurately reproduce the dependence of γ on pressure below the CO2 saturation pressure at 300 K, and over predict γ by ~20% at higher pressures. In addition, in agreement with experimental observations, the simulations predict that γ increases slightly with temperature or salinity. We also demonstrate that for non-hydroxylated quartz surfaces, θ strongly increases with pressure at subcritical and supercritical conditions. An increase in temperature significantly reduces the contact angle, especially at low-intermediate pressures (1–10 MPa), this effect is mitigated at higher pressures, 20 MPa. We also found that θ only weakly depends on salinity for the systems investigated in this work

    Shale wettability: Data sets, challenges, and outlook

    Get PDF
    © 2021 American Chemical Society. The wetting characteristics of shale rocks at representative subsurface conditions remain an area of active debate. A precise characterization of shale wettability is essential for enhanced oil and gas recovery, containment security during CO2 geo-storage, and flow back efficiency during hydraulic fracturing. While several methods were utilized in the literature to evaluate shale wettability (e.g., contact angle measurements, spontaneous imbibition method,and NMR method), we here review the recently published data sets on shale contact angle measurements. The objectives of this review are to (a) develop a repository of the recent shale wettability data sets using contact angle measurements at high pressure and temperature (HPHT) conditions, (b) explore the factors influencing shale wettability, (c) identify potential limitations associated with contact angle methods, and (d) provide a research outlook for this area. On the basis of the data reviewed here, we conclude the following: (1) Shale/oil/brine systems demonstrate water-wet to strongly oil-wet wetting behaviors. (2) Shale/CO2/brine systems are usually weakly water-wet to CO2-wet. (3) Shale/CH4/brine systems are weakly water-wet. The key contributing factors that underpin this high shale wettability variability include, but are not limited to, operating pressure and temperature conditions, total organic content (TOC), mineral matter, and thermal maturity conditions. Thus, this review provides a succinct analysis of the shale wettability contact angle data sets and affords an overview of the current state of the art technology and possible future developments in this area to enhance the understanding of shale wettability

    Acoustic response of reservoir sandstones during injection of supercritical CO2

    Get PDF
    We report experimental results for acoustic response measurements conducted during injection of supercriticalcarbon dioxide into a brine saturated sandstone plug. We measured P- and S-wave velocities (Vp, Vs) as a functionof effective stress and CO2 saturation in a sandstone plug. We demonstrate that Gassmann’s fluid substitutionprocedure matches the experimental results well for this sample. A 3.5% reduction of P-wave velocity after injectionof two pore volumes of CO2 into brine-saturated sample was measured. We conclude that measurement of Vp can beused to estimate CO2 saturations in rock. In addition, x-ray computer tomography (CT) images were acquired atreservoir conditions with a resolution of 33 µm, which provided more detailed information about CO2 saturationsand distributions in the rock. It is envisaged that these techniques (seismic and CT) can be combined in the future toenable a more holistic understanding of how fluid-fluid displacement processes are coupled with the acousticresponse characteristics of the rock

    Wettability of fully hydroxylated and alkylated (001) α-quartz surface in carbon dioxide atmosphere

    Get PDF
    Wettability of alkylated quartz surfaces is of primary importance in several technological applications, including the development of oil and gas reservoirs and carbon geo-sequestration. It is intuitively understood and experimentally confirmed that hydroxylated quartz surfaces are hydrophilic. By gradually saturating a hydroxylated (001) α-quartz surface with pentyl groups, we show using molecular dynamics simulations that the surface can also exhibit extreme hydrophobicity. Within a range of surface pentyl group density from 0.29 to 3.18/nm2, the contact angle of a water droplet under 10 MPa pressure of carbon dioxide at 300 K changes from 10–20 to 180°. This study has shown that a complete description of wettability of alkylated quartz surfaces requires three contact angles—one at the tip level of pentyl groups and two at the level of the quartz surface. The latter two are the contact angle of the spherical droplet and the hidden contact angle of a water “skirt” formed between the tip level of pentyl groups and the quartz surface. Analysis of the hidden contact angle unveils a binary wettability, where the surface relatively abruptly transforms from hydrophilic (the contact angle is less than 90°) to hydrophobic (the contact angle is 180°) with an increase in surface pentyl group concentration
    • …
    corecore